Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain–computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance. These include deep learning, adaptive optimization, and frequency-specific decomposition, which enhance accuracy and robustness. Classification methods were explored by comparing traditional machine learning with deep learning and emphasizing the role of brain lateralization in imagined speech for effective recognition and classification. This study discusses the challenges of generalizability and scalability in imagined speech recognition, focusing on subject-independent approaches and multiclass scalability. Performance benchmarking across various datasets and methodologies revealed varied classification accuracies, reflecting the complexity and variability of EEG signals. This review concludes that challenges remain despite progress, particularly in classifying directional words. Future research directions include improved signal processing techniques, advanced neural network architectures, and more personalized, adaptive BCI systems. This review is critical for future efforts to develop practical communication tools for individuals with speech and motor impairments using EEG-based BCIs.

Details

Title
Systematic Review of EEG-Based Imagined Speech Classification Methods
Author
Alzahrani, Salwa  VIAFID ORCID Logo  ; Banjar, Haneen  VIAFID ORCID Logo  ; Mirza, Rsha  VIAFID ORCID Logo 
First page
8168
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149752486
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.