Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN is used to study the production of new particles in proton–proton collisions at an LHC center of mass energy of 13.6 TeV. The detector includes a magnet based on a 6 m diameter superconducting solenoid coil operating at a current of 18.164 kA. This current creates a central magnetic flux density of 3.8 T that allows for the high-precision measurement of the momenta of the produced charged particles using tracking and muon subdetectors. The CMS magnet contains a 10,000 ton flux-return yoke of dodecagonal shape made from the assembly of construction steel blocks distributed in several layers. These steel blocks are magnetized with the solenoid returned magnetic flux and wrap the muons escaping the hadronic calorimeters of total absorption. To reconstruct the muon trajectories, and thus to measure the muon momenta, the drift tube and cathode strip chambers are located between the layers of the steel blocks. To describe the distribution of the magnetic flux in the magnet yoke layers, a three-dimensional computer model of the CMS magnet is used. To validate the calculations, special measurements are performed, with the flux loops wound in 22 cross-sections of the flux-return yoke blocks. The measured voltages induced in the flux loops during the CMS magnet ramp-ups and -downs, as well as during the superconducting coil fast discharges, are integrated over time to obtain the initial magnetic flux densities in the flux loop cross-sections. The measurements obtained during the seven standard ramp-downs of the magnet were analyzed in 2018. From that time, three fast discharges occurred during the standard ramp-downs of the magnet. This allows us to single out the contributions of the eddy currents, induced in steel, to the flux loop voltages registered during the fast discharges of the coil. Accounting for these contributions to the flux loop measurements during intentionally triggered fast discharges in 2006 allows us to perform the validation of the CMS magnet computer model with better precision. The technique for the flux loop measurements and the obtained results are presented and discussed. The method for measuring magnetic flux density in steel blocks described in this study is innovative. The experience of 3D modeling and measuring the magnetic field in steel blocks of the magnet yoke, as part of a muon detector system, has good prospects for use in the construction and operation of particle detectors for the Future Circular Electron–Positron Collider and the Circular Electron–Positron Collider.

Details

Title
Analysis of Measurements of the Magnetic Flux Density in Steel Blocks of the Compact Muon Solenoid Magnet Yoke with Solenoid Coil Fast Discharges
Author
Klyukhin, Vyacheslav 1   VIAFID ORCID Logo  ; Curé, Benoit 2   VIAFID ORCID Logo  ; Gaddi, Andrea 2 ; Kehrli, Antoine 2 ; Ostrega, Maciej 2   VIAFID ORCID Logo  ; Pons, Xavier 2   VIAFID ORCID Logo 

 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, RU-119991 Moscow, Russia; CERN, CH-1211 Geneva 23, Switzerland; [email protected] (B.C.); [email protected] (A.G.); [email protected] (A.K.); [email protected] (M.O.); [email protected] (X.P.); Joint Institute for Nuclear Research, RU-141980 Dubna, Russia 
 CERN, CH-1211 Geneva 23, Switzerland; [email protected] (B.C.); [email protected] (A.G.); [email protected] (A.K.); [email protected] (M.O.); [email protected] (X.P.) 
First page
1689
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149760469
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.