Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations. Using co-immunoprecipitation, mass spectrometry, and quantitative proteomics, we identified 159 high-confidence interacting proteins (HCIPs) in the PP1 interactome, consisting of 126 human and 33 viral proteins. We observed significant temporal changes in the PP1 interactome following HCMV infection, including the altered interactions of PP1 regulatory subunits. Further analysis highlighted the central roles of these PP1 interacting proteins in intracellular trafficking, with particular emphasis on the trafficking protein particle complex and Rab GTPases, which are crucial for the virus’s manipulation of host cellular processes in virion assembly and egress. Additionally, our study on the noncatalytic PP1 inhibitor 1E7-03 revealed a decrease in PP1’s interaction with key HCMV proteins, supporting its potential as an antiviral agent. Our findings suggest that PP1 docking motifs are critical in viral–host interactions and offer new insights for antiviral strategies.

Details

Title
Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection
Author
Weinberger, Stefan 1 ; Stecher, Carmen 1   VIAFID ORCID Logo  ; Kastner, Marie-Theres 1 ; Nekhai, Sergei 2   VIAFID ORCID Logo  ; Steininger, Christoph 3   VIAFID ORCID Logo 

 Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria 
 Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA 
 Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; Karl-Landsteiner Institute of Microbiome Research, 3100 St. Pölten, Austria 
First page
1961
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149764361
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.