Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background/Objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1. Recently, we developed a safe and efficacious live attenuated recombinant vaccine against Cyprinid herpesvirus 3 (CyHV-3). This CyHV-3 recombinant vaccine encodes a deletion of ORF57. Orthologues of CyHV-3 ORF57 exist in Cyprinid herpesvirus 2 (CyHV-2, ORF57) and AngHV-1 (ORF35). Methods: In the present study, using recombinant strains and bioluminescent in vivo imaging, we investigated the effect of AngHV-1 ORF35 deletion on virus replication in vitro, virulence in vivo, and the potential of an AngHV-1 ORF35-deleted recombinant as a vaccine candidate for the mass vaccination of eels by immersion. With this goal in mind, we produced ORF35-deleted recombinants using two parental strains: a UK strain and a recombinant derived from the former strain by insertion of a Luciferase–GFP reporter cassette into a non-coding intergenic region. Results: Analyses of ORF35-deleted recombinants led to the following observations: (i) AngHV-1 ORF35 is not essential for viral growth in cell culture, and its deletion does not affect the production of extracellular virions despite reducing the size of viral plaque. (ii) In contrast to what has been observed for CyHV-3 ORF57 and CyHV-2 ORF57, in vivo bioluminescent analyses revealed that AngHV-1 ORF35 is an essential virulence factor and that its deletion led to abortive infection in vivo. (iii) Inoculation of the AngHV-1 ORF35-deleted recombinant by immersion induced a protective immune response against a wild-type challenge. This protection was shown to be dose-dependent and to rely on the infectivity of AngHV-1 ORF35-deleted virions. Conclusions: This study suggests that the AngHV-1 ORF35 protein has singular properties compared to its orthologues encoded by CyHV-2 and CyHV-3. It also supports the potential of AngHV-1 ORF35-deleted recombinants for the mass vaccination of eels by immersion.

Details

Title
Development Using Bioluminescence Imaging of a Recombinant Anguillid Herpesvirus 1 Vaccine Candidate Associated with Normal Replication In Vitro but Abortive Infection In Vivo
Author
Zhang, Haiyan 1   VIAFID ORCID Logo  ; Sridhar, Arun 1 ; Delrez, Natacha 1   VIAFID ORCID Logo  ; He, Bo 1   VIAFID ORCID Logo  ; Fourny, Sophie 1 ; Gao, Yuan 1 ; Donohoe, Owen 2   VIAFID ORCID Logo  ; Vanderplasschen, Alain F C 3 

 Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; [email protected] (H.Z.); [email protected] (A.S.); [email protected] (N.D.); [email protected] (B.H.); [email protected] (S.F.); [email protected] (Y.G.); 
 Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; [email protected] (H.Z.); [email protected] (A.S.); [email protected] (N.D.); [email protected] (B.H.); [email protected] (S.F.); [email protected] (Y.G.); ; Bioscience Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Westmeath, Ireland 
 Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; [email protected] (H.Z.); [email protected] (A.S.); [email protected] (N.D.); [email protected] (B.H.); [email protected] (S.F.); [email protected] (Y.G.); ; WEL Research Institute, Avenue Pasteur 6, B-1300 Wavre, Belgium 
First page
1423
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2076393X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149767007
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.