It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent studies have highlighted the significance of the spindle midzone, the region between the segregating chromosomes, in ensuring proper chromosome segregation. By combining 3D electron tomography, cutting-edge light microscopy and a novel single cell in vitro essay allowing single molecule tracking, we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans by the chromokinesin KLP-19, and its relevance for proper spindle function. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and KLP-19 in C. elegans, the homologs of PRC1 and KIF4a, suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length and thus microtubule-based interactions in the spindle midzone, which affects spindle dynamics and force transmission. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* We have incorporated our latest results using a novel single cell in vitro essay allowing single molecule tracking of endogenous tagged KLP-19::GFP along stabilized Microtubules. In addition, we have rearranged and removed some figures to better represent the data. Due to this there were changes in the authorship.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer