Full text

Turn on search term navigation

© 2025 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins. We used several bioinformatics tools to predict helper T lymphocyte, cytotoxic T lymphocyte, and B-cell epitopes derived from the proteins and assessed their antigenicity, allergenicity, and toxicity. Both vaccines were constructed using selected epitopes, linkers, and adjuvants. After that, the vaccines were applied for physicochemical properties, secondary and tertiary structure predictions, and subsequent docking and simulation analyses. Accordingly, vaccine 1 (V1) and vaccine 2 (V2) showed better hydrophilicity with the grand average hydropathicity score of -0.811 and -0.648, respectively. The secondary and tertiary structures of the vaccines were also deemed satisfactory, with high stability indicated by the Ramachandran plot (V1:94.5% and V2:87.1%) and Z scores (V1: -5.15 and V2: -4.1). Docking analysis revealed substantial affinity of the vaccines towards the toll-like receptor-2 (V1: -1159.3, V2: -1246.3) and toll-like receptor-4 (V1: -1109.3, V2: -1244.8) receptors. Molecular dynamic simulation validated structural integrity and indicated varying stability throughout the simulation. Codon optimization showed significant expression of the vaccines (V1:51.88% and V2:51.63%) in E. coli vectors. Furthermore, regarding immune stimulation, the vaccines elicited significant B-cell and T-cell responses, including sustained adaptive and innate immune responses. Finally, thermodynamic predictions indicated stable mRNA structures of the vaccines (V1: -502.60 kcal/mol and V2: -450.90 kcal/mol). The proposed vaccines designed effectively targeting human papillomavirus oncoproteins have demonstrated promising results via robust immune responses, suggesting their suitability for further clinical advancement, including in vitro and in vivo experiments.

Details

Title
Designing of an mRNA vaccine against high-risk human papillomavirus targeting the E6 and E7 oncoproteins exploiting immunoinformatics and dynamic simulation
Author
Mijanur Rahman Habib Ullah Masum Rehana Parvin; Das, Shuvo Chandra; Talukder, Asma  VIAFID ORCID Logo 
First page
e0313559
Section
Research Article
Publication year
2025
Publication date
Jan 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3152096653
Copyright
© 2025 Rahman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.