It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Heart failure (HF) and atrial fibrillation (AF) usually coexist and are associated with a poorer prognosis. This study aimed to develop a model to predict in-hospital mortality in patients with HF combined with AF.
Methods
Patients with HF and AF were obtained from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database from 2008 to 2019. Feature selection was based on the Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression model. Random Forest, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), K-Nearest Neighbor (KNN) models, and their stacked model (the stacking ensemble model) were established. The area under of the curve (AUC) with 95% confidence interval (CI), sensitivity, specificity, as well as accuracy were applied to assess the performance of the predictive models.
Results
A total of 5,998 patients with HF combined with AF were included, of which 4,198 patients were assigned to the training set and 1,800 to the testing set (7:3). Among these 4,198 patients, 624 (14.86%) died in-hospital and 3,574 (85.14%) survived. Twenty-two features were used to construct the predictive model. Among these four single models, the AUC was 0.747 (95%CI: 0.717–0.777) for the Random Forest model, 0.755 (95%CI: 0.725–0.785) for the XGBoost model, 0.754 (95%CI: 0.724–0.784) for the LGBM model, and 0.746 (95%CI: 0.716–0.776) for the KNN model in the testing set. The stacking ensemble model had the highest AUC compared to the four single models, with AUCs of 0.837 (95%CI: 0.821–0.852) and 0.768 (95%CI: 0.740–0.796) for the training set and testing set, respectively.
Conclusion
The stacking ensemble model showed a good predictive effect in predicting in-hospital mortality in patients with HF combined with AF and may provide clinicians with a reference tool for early identification of mortality risk.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer