Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Graph convolution networks (GCNs) have been extensively researched for action recognition by estimating human skeletons from video clips. However, their image sampling methods are not practical because they require video-length information for sampling images. In this study, we propose an Auxiliary Task Graph Convolution Network (AT-GCN) with low and high-frame pathways while supporting a new sampling method. AT-GCN learns actions at a defined frame rate in the defined range with three losses: fuse, slow, and fast losses. AT-GCN handles the slow and fast losses in two auxiliary tasks, while the mainstream handles the fuse loss. AT-GCN outperforms the original State-of-the-Art model on the NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets while maintaining the same inference time. AT-GCN shows the best performance on the NTU RGB+D dataset at 90.3% from subjects, 95.2 from view benchmarks, on the NTU RGB+D 120 dataset at 86.5% from subjects, 87.6% from set benchmarks, and at 93.5% on the NW-UCLA dataset as top-1 accuracy.

Details

Title
Auxiliary Task Graph Convolution Network: A Skeleton-Based Action Recognition for Practical Use
Author
Cho, Junsu 1 ; Kim, Seungwon 1   VIAFID ORCID Logo  ; Chi-Min, Oh 2 ; Jeong-Min, Park 2 

 Department of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea; [email protected] 
 SafeMotion, Gwangju 61011, Republic of Korea; [email protected] 
First page
198
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153544414
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.