Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasing number of heavy-duty trucks and their high fuel consumption characteristics, reducing fuel costs has become a primary challenge for the freight industry. Consequently, accurately predicting fuel consumption for heavy-duty trucks is crucial. However, existing fuel consumption prediction models still face challenges in terms of prediction accuracy. To address this issue, a model named Cross-LSTM Multi-Feature Distillation (CLMFD) is proposed. The CLMFD model employs the Crossformer model and the LSTM model as teacher and student models, respectively, utilizing multi-layer intermediate features for distillation. Fuel consumption data from a vehicular networking system was used in this study. Initially, the raw data were preprocessed by segmenting it into two-kilometer intervals, calculating sample features, and handling outliers using box plots. Feature selection was then performed using XGBoost. Subsequently, the CLMFD model was applied to predict fuel consumption. Experimental results demonstrate that the CLMFD model significantly outperforms baseline models in prediction performance. Ablation studies further indicate that the CLMFD model effectively integrates the strengths of both the Crossformer and LSTM, exhibiting superior predictive performance. Finally, predictions on data with varying masking rates show that the CLMFD model demonstrates robust performance. These findings validate the reliability and practicality of the CLMFD model, providing strong support for future research in fuel consumption prediction.

Details

Title
Prediction of Truck Fuel Consumption Based on Crossformer-LSTM Characteristic Distillation
Author
Du, Kai 1 ; Shi, Qingqing 2 ; Song, Jingni 2   VIAFID ORCID Logo  ; Chen, Dan 1 ; Liu, Weiyu 1   VIAFID ORCID Logo 

 Electronic and Control Engineering, Chang’an University, Xi’an 710064, China; [email protected] 
 College of Transportation Engineering, Chang’an University, Xi’an 710064, China; [email protected] (Q.S.); [email protected] (J.S.) 
First page
283
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153575509
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.