Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Investigating deformation and failure mechanisms in shafts and roadways due to rock subsidence is crucial for preventing structural failures in underground construction. This study employs FLAC3D software (vision 5.00) to develop a mechanical coupling model representing the geological and structural configuration of a stratum–shaft–roadway system. The model sets maximum subsidence displacements (MSDs) of the horsehead roadway’s roof at 0.5 m, 1.0 m, and 1.5 m to simulate secondary soil consolidation from hydrophobic water at the shaft’s base. By analyzing Mises stress and plastic zone distributions, this study characterizes stress failure patterns and elucidates instability mechanisms through stress and displacement responses. The results indicate the following: (1) Increasing MSD intensifies tensile stress on overlying strata results in vertical displacement about one-fifth of the MSD at 100 m above the roadway. (2) As subsidence increases, the disturbance range of the overlying rock, shaft failure extent, and number of tensile failure units rise. MSD transitions expand the shaft failure range and evolve tensile failure from sporadic to large-scale uniformity. (3) Shaft failure arises from the combined effects of instability and deformation in the horsehead and connecting roadways, compounded by geological conditions. Excitation-induced disturbances cause bending of thin bedrock, affecting the bedrock–loose layer interface and leading to shaft rupture. (4) Measures including establishing protective coal pillars and enhancing support strength are recommended to prevent shaft damage from mining subsidence and water drainage.

Details

Title
Deformation and Instability Mechanisms of a Shaft and Roadway Under the Influence of Rock Mass Subsidence
Author
Rong, Junfeng 1 ; Wang, Bin 2   VIAFID ORCID Logo 

 School of Civil Engineering, University of New South Wales, Sydney, NSW 2052, Australia 
 Engineering Research Center of Underground Mine Engineering, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China; [email protected] 
First page
163
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153577693
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.