Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

Ceramic bridge bearings are designed for long-term durability, extreme low- and high-temperature environments, and applications where the use of metallic components is restricted.

Abstract

This study evaluates the potential of ceramic materials as friction components in bridge bearings, focusing on durability and frictional behavior under high-load conditions. Bridge bearings traditionally use materials such as PTFE and UHMWPE, which suffer from wear, oxidation, and deformation over time, leading to costly maintenance and frequent replacements. To address these limitations, zirconia-based ceramics were selected for their high hardness, wear resistance, and low friction coefficient. Frictional tests on ceramic samples, including surface roughness adjustments and stress conditions, indicated a stable frictional performance with minimal wear over extended cycles. The results suggest that ceramic materials can maintain consistent frictional properties without lubricant use, potentially reducing bearing maintenance costs and extending their service life. These findings suggest that ceramics could serve as a promising alternative to conventional friction materials in bridge bearings by offering enhanced durability, reduced maintenance requirements, and improved operational reliability.

Details

Title
Friction Behavior of Ceramic Materials for the Development of Bridge-Bearing Friction Materials
Author
Ji-Hun Park  VIAFID ORCID Logo  ; Jung-Woo, Lee
First page
152
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153579817
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.