Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)2ZrCl2, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC). Unexpectedly, a bimodal MWD was highlighted when the precatalyst was activated with methylaluminoxane (MAO), whereas a single Schulz–Flory (SF) MWD was observed with borate salts. The presence of Al centers with different Lewis acidity in the complex and ill-defined structure of MAO is well known, and the broadening effects on the MWD of olefin polymerization products made with metallocene/MAO catalyst systems have been reported before. However, to the best of our knowledge, clear HR-HPLC evidence of two active species resulting from activation with MAO of one single zirconocene precursor, yielding two discrete SF product distributions, is unprecedented. By varying the polarity of the reaction medium, we managed to modulate the MWD of the oligomers from bimodal to monomodal, even with MAO, thus demonstrating that ion pairing effects are behind these unusual findings.

Details

Title
α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane
Author
Zaccaria, Francesco  VIAFID ORCID Logo  ; Vittoria, Antonio  VIAFID ORCID Logo  ; Antinucci, Giuseppe  VIAFID ORCID Logo  ; Cipullo, Roberta  VIAFID ORCID Logo  ; Busico, Vincenzo
First page
46
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153634574
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.