Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vessel traffic is an important source of global greenhouse gas emissions. The carbon emissions from ships in the canal network are directly linked to the environmental performance of China’s inland waterway transportation, contributing to the achievement of global carbon reduction goals. Therefore, systematically assessing the carbon emission reduction levels of ships in canal networks is essential to provide a robust foundation for developing more scientific and feasible emission reduction strategies. To address the limitations of current evaluations—which often focus on a single dimension and lack an objective, quantitative representation of the mechanisms driving carbon emission and their synergistic effects—this study took a comprehensive approach. First, considering the factors influencing ship carbon emissions and emission reduction strategies, an evaluation index system was developed. This system included 6 first-level indexes and 22 s-level indexes, covering aspects such as energy utilization, technical equipment, and economic benefits. Second, a novel combination of methods was used to construct an evaluation model. Qualitative weights, determined through the interval binary semantic method, were integrated with quantitative weights calculated using the CRITIC method. These were then combined and assigned using a game-theory-based comprehensive assignment method. The resulting evaluation model, built upon the theory of matter-element topology, represents a significant methodological innovation. Finally, the evaluation method was applied to the empirical analysis of ships operating in Jiangsu section of the Beijing–Hangzhou Grand Canal. This application demonstrated the model’s specificity and feasibility. The study’s findings provide valuable insights for improving carbon emission reduction levels for inland ships and advancing the sustainable development of the shipping industry.

Details

Title
Carbon Emission Reduction Assessment of Ships in the Grand Canal Network Based on Synthetic Weighting and Matter-Element Extension Model
Author
Sun, Zhengchun 1 ; Xu, Sudong 1 ; Jiang, Jun 2 

 College of Transportation, Southeast University, Nanjing 211189, China; [email protected] 
 College of Transportation, Chongqing Jiaotong University, Chongqing 400074, China; [email protected] 
First page
349
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153638863
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.