Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate synthetic image generation is crucial for addressing data scarcity challenges in medical image classification tasks, particularly in sensor-derived medical imaging. In this work, we propose a novel method using a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and nearest-neighbor interpolation to generate high-quality synthetic images for diabetic retinopathy classification. Our approach enhances training datasets by generating realistic retinal images that retain critical pathological features. We evaluated the method across multiple retinal image datasets, including Retinal-Lesions, Fine-Grained Annotated Diabetic Retinopathy (FGADR), Indian Diabetic Retinopathy Image Dataset (IDRiD), and the Kaggle Diabetic Retinopathy dataset. The proposed method outperformed traditional generative models, such as conditional GANs and PathoGAN, achieving the best performance on key metrics: a Fréchet Inception Distance (FID) of 15.21, a Mean Squared Error (MSE) of 0.002025, and a Structural Similarity Index (SSIM) of 0.89 in the Kaggle dataset. Additionally, expert evaluations revealed that only 56.66% of synthetic images could be distinguished from real ones, demonstrating the high fidelity and clinical relevance of the generated data. These results highlight the effectiveness of our approach in improving medical image classification by generating realistic and diverse synthetic datasets.

Details

Title
WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models
Author
Anaya-Sánchez, Héctor 1   VIAFID ORCID Logo  ; Altamirano-Robles, Leopoldo 1   VIAFID ORCID Logo  ; Díaz-Hernández, Raquel 2   VIAFID ORCID Logo  ; Zapotecas-Martínez, Saúl 1   VIAFID ORCID Logo 

 Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico; [email protected] (H.A.-S.); [email protected] (S.Z.-M.) 
 Optics Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico; [email protected] 
First page
167
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153688557
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.