Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A rapidly growing body of experimental evidence in the literature shows that the effects of humans interacting with vibrating structures, other humans, and their surrounding environment can be critical for reliable estimation of structural vibrations. The Interaction-based Vibration Serviceability Assessment framework (I-VSA) was proposed by the authors in 2017 to address this, taking into account human-structure dynamic interactions (HSI) to simulate the structural vibrations experienced by each occupant/pedestrian. The I-VSA method, however, had limited provisions to simulate simultaneously multiple modes of structure in HSI, to simulate human-human and human-environment interactions, and the movement pattern of the occupants/pedestrians. This study proposes a new Agent-based Vibration Serviceability Assessment framework, termed AVSA, to address the following limitations: (a) allowing for multiple modes of structure to be simulated simultaneously, (b) to simulate effects of vibrations on gait parameters and walking pattern/routes, and (c) to simulate human-environment interactions, and movement patterns for any desired interior layout and use case. The AVSA framework was used to simulate the response and to assess the vibration serviceability of a lightweight floor under a combination of sitting and walking traffic, where three vertical modes of vibrations were engaged simultaneously. The results of the simulations show that for all tests, the experimental Cumulative Distribution Functions of the vibrations experienced by the participants are within the 95% confidence interval predicted by the AVSA method. The proposed method provides a generic and flexible framework to simulate simultaneously different interaction modalities, different human tasks and postures, and multiple modes of structure and the human body.

Details

Title
Vibration Serviceability Assessment of Floor Structures: Simulation of Human–Structure–Environment Interactions Using Agent-Based Modeling
Author
Shahabpoor, Erfan 1 ; Berari, Bernard 1 ; Pavic, Aleksandar 2 

 Department of Architecture & Civil Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; [email protected] 
 Department of Engineering, University of Exeter, Exeter EX4 4QF, UK; [email protected] 
First page
126
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153689951
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.