Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of Deep Learning algorithms in the domain of Decision Making for Autonomous Vehicles has garnered significant attention in the literature in recent years, showcasing considerable potential. Nevertheless, most of the solutions proposed by the scientific community encounter difficulties in real-world applications. This paper aims to provide a realistic implementation of a hybrid Decision Making module in an Autonomous Driving stack, integrating the learning capabilities from the experience of Deep Reinforcement Learning algorithms and the reliability of classical methodologies. Our Decision Making system is in charge of generating steering and velocity signals using the HD map information and sensors pre-processed data. This work encompasses the implementation of concatenated scenarios in simulated environments, and the integration of Autonomous Driving modules. Specifically, the authors address the Decision Making problem by employing a Partially Observable Markov Decision Process formulation and offer a solution through the use of Deep Reinforcement Learning algorithms. Furthermore, an additional control module to execute the decisions in a safe and comfortable way through a hybrid architecture is presented. The proposed architecture is validated in the CARLA simulator by navigating through multiple concatenated scenarios, outperforming the CARLA Autopilot in terms of completion time, while ensuring both safety and comfort.

Details

Title
Enhancing Autonomous Driving in Urban Scenarios: A Hybrid Approach with Reinforcement Learning and Classical Control
Author
Gutiérrez-Moreno, Rodrigo  VIAFID ORCID Logo  ; Barea, Rafael  VIAFID ORCID Logo  ; López-Guillén, Elena  VIAFID ORCID Logo  ; Arango, Felipe  VIAFID ORCID Logo  ; Sánchez-García, Fabio; Bergasa, Luis M  VIAFID ORCID Logo 
First page
117
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153691596
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.