Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The presented study investigated the possibility of using the Acinetobacter johnsonii MC5 strain, isolated from raw sewage by the enrichment culture method, in the bioremediation of soil contaminated with selected NSAIDs, i.e., ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX), using the bioaugmentation technique. The degradation potential of A. johnsonii MC5 was first evaluated using a mineral salt medium containing drugs as the only sources of carbon and energy. The results show that the strain MC5 was capable of utilizing the tested compounds in medium, indicating that the drugs might be metabolically degraded. IBF and NPX were degraded with a similar rate and DT50 values were determined to be approximately 5 days, while the degradation process for DCF was slower, and the DT50 value was about 5 times higher (22.7 days) compared to those calculated for IBF and NPX. Bioaugmentation of non-sterile soil with A. johnsonii MC5 increased the rate of disappearance of the tested drugs, and DT50 values decreased 5.4-, 3.6-, or 6.5-fold for IBF, DCF, or NPX, respectively, in comparison with the values obtained for the soil with indigenous microorganisms only. The obtained results suggest that A. johnsonii MC5 may have potential for use in bioremediation of NSAID-contaminated soils; however, detailed studies are needed before using this strain in such process on a larger scale.

Details

Title
Enhanced Dissipation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Soil by the Bioaugmentation with Newly Isolated Strain Acinetobacter johnsonii MC5
Author
Cycoń, Mariusz 1   VIAFID ORCID Logo  ; Żmijowska, Agnieszka 2 ; Klim, Magdalena 1   VIAFID ORCID Logo 

 Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; [email protected] 
 Laboratory of Analytical Chemistry, Ecotoxicology Research Group, Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland; [email protected] 
First page
190
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153753568
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.