Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide despite significant improvements in diagnostic modalities. Emerging evidence suggests that erythrocytes, or red blood cells (RBCs), are one of the most important contributors to the events implicated in atherosclerosis, although the molecular mechanisms behind it are under investigation. We used NMR-based lipidomic technology to investigate the RBC lipidome in patients with CHD compared to those with normal coronary arteries (NCAs), all angiographically documented, and its correlation with coronary artery stenosis. Targeted and untargeted lipidomic analysis revealed that CHD patients presented significant lipid alterations in the RBC membrane, characterized by higher cholesterol, sphingolipids, saturated and monounsaturated fatty acids, lower phospholipids (glycerophospholipids and ether glycerolipids), and unsaturated and polyunsaturated fatty acids. These aberrations gradually distinguish the three subgroups of patients with mild, moderate, and severe coronary stenosis, potentially indicating their non-negligible involvement in the onset and progression of atherosclerosis. The comprehensive analysis of RBC-membrane-derived lipids with omics approaches could unravel specific lipid abnormalities taking place at the silent subclinical stage of atherosclerosis and could have the potential to identify patients with subtle, but still proatherogenic, abnormalities that may confer a higher risk for the development of CHD.

Details

Title
Nuclear Magnetic Resonance (NMR)-Based Lipidomics Reveal the Association of Altered Red Blood Cell (RBC) Membrane Lipidome with the Presence and the Severity of Coronary Artery Stenosis
Author
Kastani, Ioanna A 1 ; Soltani, Paraskevi K 1 ; Baltogiannis, Giannis G 2 ; Christou, Georgios A 3   VIAFID ORCID Logo  ; Bairaktari, Eleni T 1 ; Kostara, Christina E 1   VIAFID ORCID Logo 

 Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; [email protected] (I.A.K.); [email protected] (P.K.S.); [email protected] (E.T.B.) 
 Private Practice, Ioannina & St. Luke’s Hospital Thessaloniki, 55236 Thessaloniki, Greece; [email protected] 
 First Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; [email protected] 
First page
36
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153755749
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.