It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Besides the successful use of support software in cutting-edge medical procedures, the significance of determining a disease early signs and symptoms before its detection is a growing pressing requirement to raise the standard of medical examination and treatment. This creates favourable conditions, reduces patient inconvenience and hospital overcrowding. Before transferring patients to an appropriate doctor, healthcare staff must have the patient’s symptoms. This study leverages the PhoBERT model to assist in classifying patients with text classification tasks based on symptoms they provided in the first stages of Vietnamese hospital admission. The outcomes of PhoBERT on more than 200 000 text-based symptoms collected from Vietnamese hospitals can improve the classification performance compared to Bag of Words (BOW) with classic machine learning algorithms, and some considered deep learning architectures such as 1D-Convolutional Neural Networks and Long Short-Term Memory. The proposed method can achieve promising results to be deployed in automatic hospital admission procedures in Vietnam.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 College of Information and Communication Technology, Can Tho University, Can Tho, Vietnam
2 Information Technology Centre (Area 5), Vietnam Posts and Telecommunications Group, Tien Giang, Vietnam