It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The aim of this work is to tackle the three–dimensional (3D) Heston– Cox–Ingersoll–Ross (HCIR) time–dependent partial differential equation (PDE) computationally by employing a non–uniform discretization and gathering the finite difference (FD) weighting coe cients into differentiation matrices. In fact, a non–uniform discretization of the 3D computational domain is employed to achieve the second–order of accuracy for all the spatial variables. It is contributed that under what conditions the proposed procedure is stable. This stability bound is novel in literature for solving this model. Several financial experiments are worked out along with computation of the hedging quantities Delta and Gamma.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137–66731, Iran. [email protected]
2 Department of Mathematics, Art and Science Faculty, Siirt University, Siirt, Turkey. [email protected]
3 Department of Mathematics, Faculty of Education, Siirt University, Siirt, Turkey