Full Text

Turn on search term navigation

© 2025 Zeng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Stock price prediction is a challenging research domain. The long short-term memory neural network (LSTM) widely employed in stock price prediction due to its ability to address long-term dependence and transmission of historical time signals in time series data. However, manual tuning of LSTM parameters significantly impacts model performance. PSO-LSTM model leveraging PSO’s efficient swarm intelligence and strong optimization capabilities is proposed in this article. The experimental results on six global stock indices demonstrate that PSO-LSTM effectively fits real data, achieving high prediction accuracy. Moreover, increasing PSO iterations lead to gradual loss reduction, which indicates PSO-LSTM’s good convergence. Comparative analysis with seven other machine learning algorithms confirms the superior performance of PSO-LSTM. Furthermore, the impact of different retrospective periods on prediction accuracy and finding consistent results across varying time spans are. Conducted in the experiments.

Details

Title
Enhancing stock index prediction: A hybrid LSTM-PSO model for improved forecasting accuracy
Author
Zeng, Xiaohua  VIAFID ORCID Logo  ; Liang, Changzhou; Yang, Qian; Wang, Fei; Cai, Jieping
First page
e0310296
Section
Research Article
Publication year
2025
Publication date
Jan 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3155638535
Copyright
© 2025 Zeng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.