Full text

Turn on search term navigation

© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The tropospheric NO2 vertical column density (VCD) values measured by the Tropospheric Monitoring Instrument (TROPOMI) were used to study the NO2 variability and estimate urban NOx emissions for 261 major cities worldwide. The used algorithm isolated three components in tropospheric NO2 data – background NO2, NO2 from urban sources, and NO2 from industrial point sources – and then each of these components was analyzed separately. The method is based on fitting satellite data by a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis. Unlike other similar studies that studied plumes from emission point sources, this study included the background component as a function of the elevation in the analysis and separated urban emissions from emissions from industrial point sources. Population density and surface elevation data as well as coordinates of industrial sources were used in the analysis. The largest per capita emissions were found in the Middle East, and the smallest were in India and southern Africa. The largest background component was observed over China and parts of Europe, while the smallest was over South America, Australia, and New Zealand. Differences between workday and weekend emissions were also studied. Urban emissions on Sundays (or Fridays for some countries) are typically 20 %–50 % less than workday emissions for all regions except China. The background component typically does not show any significant differences between workdays and weekends, suggesting that background NO2 has a substantially longer lifetime compared to that in the urban and industrial plumes.

Details

Title
Global seasonal urban, industrial, and background NO2 estimated from TROPOMI satellite observations
Author
Vitali Fioletov 1   VIAFID ORCID Logo  ; McLinden, Chris A 1   VIAFID ORCID Logo  ; Griffin, Debora 1   VIAFID ORCID Logo  ; Zhao, Xiaoyi 1   VIAFID ORCID Logo  ; Eskes, Henk 2   VIAFID ORCID Logo 

 Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada 
 Royal Netherlands Meteorological Institute, De Bilt, the Netherlands 
Pages
575-596
Publication year
2025
Publication date
2025
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3156317653
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.