Full text

Turn on search term navigation

© 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid economic development has led to the declining quality of the atmospheric environment. At present, my country is facing a very serious problem of atmospheric environmental pollution. Accurate prediction of air quality plays a vital role in the realization of air pollution control by environmental protection departments. Based on the historical air pollution concentration data, this paper establishes a BP neural network model to learn the statistical law of air pollutant values to realize the prediction of air quality in the future. Through the analysis of the target of air quality prediction, the design of an air quality prediction method based on BP neural network is designed. This method includes four stages: air pollutant concentration data collection, data processing, air quality index calculation, and prediction network construction. The experimental results show that the air quality prediction method based on BP neural network designed and implemented in this paper, combined with the developed air quality prediction system, can effectively predict the recent changes in air quality and various air pollutant concentrations. By collecting the concentration data of air pollutants and learning the changes of air pollutants to achieve air quality prediction, it provides a quantitative reference for government environmental protection departments to achieve air pollution control.

Details

Title
Analysis and Forecast of Urban Air Quality Based on BP Neural Network
Author
Wang, Wenjing 1 ; Yang, Shengquan 1 

 School of Computer Science and Engineering Xi’an Technological UniversityXi’an, China 
Pages
57-64
Publication year
2020
Publication date
2020
Publisher
De Gruyter Poland
e-ISSN
24708038
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3156833190
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.