It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fluorescent dyes offer a useful method for the measurement of intracellular lipids. They are inexpensive and require simple optical measurement instrumentation, whilst simultaneously providing high throughput application. Nile Red is a hydrophobic, metachromatic dye which has been widely used for detection of intracellular lipids. However, Nile Red fluorescence depends on its concentration, microenvironment polarity, incubation time and, therefore, requires strain specific optimization. Hence, neutral lipids in Chlorella emersonii and Pseudokirchneriella subcapitata cannot be quantified using existing Nile Red methods developed for other microalgae strains and, therefore an optimised procedure for these strains is required. In this method development, the optimal excitation and emission wavelengths were selected based on the solvent used for Nile Red dissolution. The effect of Nile Red concentration, microalgae cell concentration, incubation time on fluorescence intensity was explored and optimised. Quintuplet assay repeats were executed for increased assay robustness for two microalgae strains, Chlorella emersonii and Pseudokirchneriella subcapitata, with protocol reliability confirmed by fluorescence microscopy. In brief, 20% (v/v) DMSO containing 10μg/ml and 5μg/ml Nile red was found to be ideal concentration for neutral lipid estimation in Chlorella emersonii and Pseudokirchneriella subcapitata respectively when an incubation time of 60mins and 40mins at 40°C was used. This optimised Nile Red protocol is a robust, simple and cost-effective method for neutral lipid quantification in Chlorella emersonii and Pseudokirchneriella subcapitata.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin, Ireland