It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The paper deals with the influence of selected component of synthesis gas on internal parameters of combustion engine that is planned to be used in micro-cogeneration unit. The aim is to better understand the mechanism of combustion of carbon monoxide mixed with methane and as a follow-up to optimize the operation of the Lombardini LGW 702 engine on change of fuel composition. Generally, an increasing proportion of carbon monoxide in methane mixture leads to a decrease in engine performance (mean indicated pressure) and the hourly fuel consumption in each of the operating modes of the engine increases. With growing proportion of CO in mixture with CH4, the maximum pressure in the cylinder increases together with pressure rise rate up to approximately 10 % vol. of CH4. With further increasing proportion of CH4, there is a significant decrease of the before-mentioned engine parameters. The optimum ignition angle for pure methane, or carbon monoxide, does not change significantly and it is about 27° CA BTDC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Transport Technology and Engineering Design, Námestie slobody 17, 812 31 Bratislava, Slovakia