It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Our objectives were to investigate the extended-spectrum beta-lactamases (ESBLs) and carbapenemases (CR) genetic determinants and to assess the association between ESBL production and quinolone resistance in bacterial strains isolated from renal transplant recipients with urinary tract infections. Material and methods: A number of 30 isolates were recovered from urine specimens of patients with renal transplant from October 2015 to March 2016. The isolates were analyzed for ESBL production using double disc synergy test and for CR production by the Hodge test. Phenotypically confirmed isolates were screened by PCR for the identification of ESBL, CR and fluoroquinolone resistance genes. Results: The 30 clinical bacterial strains isolated from urinary tract infections in renal transplant recipients were identified as Klebsiella pneumoniae (17), Pseudomonas aeruginosa (7), Morganella morganii (2), Escherichia coli (2), Edwardsiella tarda (1) and Enterobacter cloacae (1). Out of them, 22 isolates were ESBL producers and 20 multi-drug resistant (MDR) (i.e., 13 K. pneumoniae and 7 P. aeruginosa strains). More than half of the ESBL clinical strains (14/22, 63.63%) revealed at least one ESBL gene, the most frequent being blaCTX-M type (18/22, 81.81%), either alone (4/22, 18.18%) or in combination with another ESBL gene (17/22, 77.27%), followed by blaTEM (13/22, 59.09%). The blaOXA-48 was present in 10 isolates (33.33%). The most frequent association of ESBLs and CR genes (5/14, 35.71%) was revealed by blaCTX-M- blaTEM - blaOXA-48, encountered particularly among K. pneumoniae isolates (4/17, 23.52%). The qnrB gene was identified in five strains, i.e. one P. aeruginosa ESBL isolate (expressing the blaCTX-M gene) and four K. pneumoniae ESBL isolates (harboring the blaCTX-M - blaTEM genes combination). Conclusions: The uropathogenic strains isolated from renal transplant recipients exhibited high rates of MDR and beta-lactam resistance. The selective pressure exerted by quinolones could enable uropathogenic bacteria to acquire resistance to this class of antibiotics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
2 Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania; Research Institute of the University of Bucharest-ICUB, Romania
3 National Institute for Research and Development in Environmental Protection, Bucuresti, Romania
4 Fundeni Clinical Institute, Bucharest, Romania