Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research analyzes a multi-server retrial queue with two types of calls: working vacation and working breakdown. The incoming call may enter the retrial queue and attempt to seize a server after a random delay if all the servers are unavailable upon arrival. In its idle time, the server makes outgoing calls. All the servers take a synchronous working vacation when the system empties after regular service. The system may fail at any time due to disasters, forcing all the calls within the service area to leave the system and causing all the main servers to fail. When the main servers fail, the repair process begins immediately. The standby servers serve arriving customers at a lower level of service during the working breakdown or working vacation. For this model, we derive an explicit expression for the stationary distribution with the help of the quasi-birth-and-death process and the matrix geometric method. Further, the formulas of various system performance indices are developed. An application example is given and several numerical experiments are performed to verify the analytical results. We also perform the comparative analysis of retrial queues with/without two-way communication and two-way communication retrial queues with/without disasters. The results reveal that the proper consideration of outgoing calls to the server can reduce the average time spent in the buffer. Furthermore, a more reliable server reduces the server idle rate.

Details

Title
Multi-Server Two-Way Communication Retrial Queue Subject to Disaster and Synchronous Working Vacation
Author
Liu, Tzu-Hsin 1 ; He-Yao, Hsu 2 ; Fu-Min, Chang 1 

 Department of Finance, Chaoyang University of Technology, 168, Jifeng East Road, Wufeng District, Taichung City 41349, Taiwan; [email protected] 
 Ph.D. Program of Business Administration in Industrial Development, Department of Business Administration, Chaoyang University of Technology, 168, Jifeng East Road, Wufeng District, Taichung City 41349, Taiwan 
First page
24
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159222458
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.