Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seed quality testing is crucial for ensuring food security and stability. To accurately detect the germination status of corn seeds during the paper medium germination test, this study proposes a corn seed germination status detection model based on YOLO v8n (CSGD-YOLO). Initially, to alleviate the complexity encountered in conventional models, a lightweight spatial pyramid pooling fast (L-SPPF) structure is engineered to enhance the representation of features. Simultaneously, a detection module dubbed Ghost_Detection, leveraging the GhostConv architecture, is devised to boost detection efficiency while simultaneously reducing parameter counts and computational overhead. Additionally, during the downsampling process of the backbone network, a downsampling module based on receptive field attention convolution (RFAConv) is designed to boost the model’s focus on areas of interest. This study further proposes a new module named C2f-UIB-iAFF based on the faster implementation of cross-stage partial bottleneck with two convolutions (C2f), universal inverted bottleneck (UIB), and iterative attention feature fusion (iAFF) to replace the original C2f in YOLOv8, streamlining model complexity and augmenting the feature fusion prowess of the residual structure. Experiments conducted on the collected corn seed germination dataset show that CSGD-YOLO requires only 1.91 M parameters and 5.21 G floating-point operations (FLOPs). The detection precision(P), recall(R), mAP0.5, and mAP0.50:0.95 achieved are 89.44%, 88.82%, 92.99%, and 80.38%. Compared with the YOLO v8n, CSGD-YOLO improves performance in terms of accuracy, model size, parameter number, and floating-point operation counts by 1.39, 1.43, 1.77, and 2.95 percentage points, respectively. Therefore, CSGD-YOLO outperforms existing mainstream target detection models in detection performance and model complexity, making it suitable for detecting corn seed germination status and providing a reference for rapid germination rate detection.

Details

Title
CSGD-YOLO: A Corn Seed Germination Status Detection Model Based on YOLOv8n
Author
Sun, Wenbin 1   VIAFID ORCID Logo  ; Xu, Meihan 2 ; Xu, Kang 1 ; Chen, Dongquan 1   VIAFID ORCID Logo  ; Wang, Jianhua 2 ; Yang, Ranbing 1 ; Chen, Quanquan 2 ; Yang, Songmei 3   VIAFID ORCID Logo 

 School of Information and Communication Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Intelligent Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Haikou 570228, China; Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China 
 Sanya Institute, China Agricultural University, Sanya 572025, China 
 Key Laboratory of Tropical Intelligent Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Haikou 570228, China; Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China 
First page
128
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159276376
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.