Full text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA–disease associations using biological experiments is inefficient in terms of cost and time. Methods: Here, we discuss a novel machine-learning model that effectively predicts disease-related miRNAs using a graph convolutional neural network with neural collaborative filtering (GCNCF). By applying the graph convolutional neural network, we could effectively capture important miRNAs and disease feature vectors present in the network while preserving the network structure. By exploiting neural collaborative filtering, miRNAs and disease feature vectors were effectively learned through matrix factorization and deep learning, and disease-related miRNAs were identified. Results: Extensive experimental results based on area under the curve (AUC) scores (0.9216 and 0.9018) demonstrated the superiority of our model over previous models. Conclusions: We anticipate that our model could not only serve as an effective tool for predicting disease-related miRNAs but could be employed as a universal computational framework for inferring relationships across biological entities.

Details

Title
Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association
Author
Ha, Jihwan  VIAFID ORCID Logo 
First page
136
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159333640
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.