Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microbubbles have been applied in various fields. In the mercury targets of spallation neutron sources, where cavitation damage is a crucial issue for life estimation, microbubbles are injected into the mercury to absorb the thermal expansion of the mercury caused by the pulsed proton beam injection and reduce the macroscopic pressure waves, which results in reducing the damage. Recently, when the proton beam power was increased and the number of injected gas bubbles was increased, unique damage morphologies were observed on the solid–liquid interface. Detailed observation and numerical analyses revealed that the microscopic pressure emitted from the gas bubbles contracting is sufficient to form pit damage, i.e., the directions of streak-like defects which are formed by connecting the pit damage coincides with the direction of the gas bubble trajectories, and the distances between the pits was understandable when taking the natural period of gas bubble vibration into account. This indicates that gas microbubbles, used to reduce macroscopic pressure waves, have the potential to be inceptions of cavitation damage due to the microscopic pressure emitted from these gas bubbles. To completely mitigate the damage, we have to consider the two effects of injecting gas bubbles: reducing macroscopic pressure waves and reducing the microscopic pressure due to bubble dynamics.

Details

Title
Damage on a Solid–Liquid Interface Induced by the Dynamical Behavior of Injected Gas Bubbles in Flowing Mercury
Author
Kogawa, Hiroyuki; Wakui, Takashi; Futakawa, Masatoshi
First page
3
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159418271
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.