Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The anticipated diagnosis of cancers and other fatal diseases from the simple analysis of the volatiles emitted by the body (volatolome) is getting closer and closer from becoming reality. The promises of vapour sensor arrays are to provide a rapid, reliable, non-invasive and ready-to-use method for clinical applications by making an olfactive fingerprint characteristic of people’s health state, to increase their chance of early recovery. However, the different steps of this complex and ambitious process are still paved with difficulties needing innovative answers. The purpose of this review is to provide a statement of the blocs composing the diagnostic chain to identify the improvements still needed. Nanocomposite chemo-resistive transducers have unique prospects to enhance both the selectivity and sensitivity to volatile biomarkers. The variety of their formulations offers multiple possibilities to chemical functionalization and conductive architectures that should provide solutions to discriminations and stability issues. A focus will be made on the protocols for the collection of organic volatile compounds (VOC) from the body, the choice of vapour sensors assembled into an array (e-nose), in particular, chemo-resistive vapour sensors, their principle, fabrication and characteristics, and the way to extract pertinent features and analyse them with suitable algorithms that are able to find and produce a health diagnosis.

Details

Title
Volatolomics for Anticipated Diagnosis of Cancers with Chemoresistive Vapour Sensors: A Review
Author
Sachan, Abhishek; Castro, Mickaël  VIAFID ORCID Logo  ; Feller, Jean-François  VIAFID ORCID Logo 
First page
15
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159426403
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.