Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study introduces a greedy algorithm for deriving decision rules from decision tree ensembles, targeting enhanced interpretability and generalization in distributed data environments. Decision rules, known for their transparency, provide an accessible method for knowledge extraction from data, facilitating decision-making processes across diverse fields. Traditional decision tree algorithms, such as CART and ID3, are employed to induce decision trees from bootstrapped datasets, which represent distributed data sources. Subsequently, a greedy algorithm is applied to derive decision rules that are true across multiple decision trees. Experiments are performed, taking into account knowledge representation and discovery perspectives. They show that, as the value of α, 0α<1, increases, shorter rules are obtained, and also it is possible to improve the classification accuracy of rule-based models.

Details

Title
Greedy Algorithm for Deriving Decision Rules from Decision Tree Ensembles
Author
Evans, Teiko Tetteh  VIAFID ORCID Logo  ; Zielosko, Beata  VIAFID ORCID Logo 
First page
35
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159441393
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.