It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The use of nanoparticle-infused blended refrigerants is essential for achieving an effective sustainable system. This investigation analyses the efficiency of three nano-refrigerants (CuO-R152a, TiO2-R152a and TiO2-R113a) on the basis of the thermal performance and energy usage of the compressor using MATLAB-Simulink in the vapour compression refrigeration cycle with a two-phase flow domain. Also, nanoparticle volume concentrations of 0.1%–0.5% in the basic refrigerants are investigated. In the Simulink model, the outcomes are calculated mathematically. Using the NIST chemistry webbook, the thermo-physical characteristics of base refrigerants were calculated, and different numerical models were used to compute the characteristics of nano-enhanced refrigerants. MS Excel was used to perform the liquid–vapour interpolation. It was discovered that refrigerants with nanoparticles have superior heat-transfer properties and operate most excellently at an optimal volume fraction of 0.1% for TiO2-R152a and CuO-R152a with a coefficient of performance (COP) as 10.8. However, the other blended nano-refrigerant TiO2-R113a performed the best at 0.5% of nano-particle volume fraction with a COP value of 5.27.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details










1 School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India
2 DII, University of Naples Federico II, P.leTecchio 80, 80125, Napoli, Italy
3 Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351, Bialystok, Poland
4 Department of Thermal Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
5 Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India