Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional coal mine gas risk assessment relies on manual operations, leading to inefficiencies, incomplete information integration, and insufficient evaluation accuracy, ultimately affecting safety oversight. This paper proposes an intelligent gas risk assessment and report generation framework (IGRARG) based on fine-tuning a Generative Language Model (GLM) to address these challenges. The framework integrates multi-source sensor data with the reasoning capabilities of large language models (LLMs). It constructs a gas risk dataset for coal mine safety scenarios, fine-tuned with GLM. Incorporating industry regulations and a domain-specific knowledge base enhanced with a Retrieval-Augmented Generation (RAG) mechanism, the framework automates alarm judgment, suggestion generation, and report creation via a hierarchical graph structure. Real-time human feedback further refines decision making. Experimental results show an evaluation accuracy of 85–93%, with over 300 field tests achieving a 94.46% alarm judgment accuracy and reducing weekly report generation from 90 min to 2–3 min. This framework significantly enhances the intelligence and efficiency of gas risk assessment, providing robust decision support for coal mine safety management.

Details

Title
Intelligent Gas Risk Assessment and Report Generation for Coal Mines: An Innovative Framework Based on GLM Fine-Tuning
Author
Sun, Yi; Han, Ying; Liu, Xinke
First page
379
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159490797
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.