Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recent studies have shown that the geothermal systems in Tibet are rich in rare metal elements such as lithium (Li), boron (B), rubidium (Rb), and cesium (Cs). However, the understanding of the origin of Cs-rich geyserite formed by hot springs remains unclear. In this study, a detailed petrological, elemental geochemical, and strontium–neodymium (Sr–Nd) isotopic investigation on Cs-rich geyserite in the Chabu region revealed that opal was the main mineral component of Chabu geyserite; here, some samples were rich in terrigenous clastic material, and well-developed diatom fossils were also present. Chabu geyserite had high contents of SiO2 (78.95%–94.72%) and Al2O3 (3.02%–8.14%) and low contents of Fe2O3 (0.21%–1.94%), TiO2 (0.01%–0.20%), MnO (0.01%–0.15%); additionally, the Fe/Ti ratio, the Al/(Al + Fe) ratio, and the Al/(Al + Fe + Mn) ratio showed large variations. These results indicated different degrees of participation by the terrigenous materials, hydrothermal deposition, and biogenic processes. Chabu geyserite was depleted in transition metal elements (e.g., Sc, V, and Cr) and high field strength elements (e.g., Nb, Zr, and Hf), relatively enriched in large-ion lithophile elements (e.g., Li, Rb, Sr, and Ba), and strongly enriched in Cs, (by up to 100 times the Cs content in the upper crust); in addition, it had low V/Y (1.30–2.00) and U/Th ratios. Chabu geyserite exhibited a right-dipping rare earth element (REE) distribution pattern and had significant negative Eu anomalies (0.26–0.72) and no or weak positive Ce anomalies (0.97–1.36). These results further indicated the influence of terrigenous clastic materials and nonhydrothermal sedimentation factors. The Sr–Nd isotopic composition of Chabu geyserite was significantly different from that of the mantle, with relatively high 87Sr/86Sr ratios (0.7070–0.7076) and low 143Nd/144Nd ratios (0.512223–0.512314). These ratios were similar to those of the crust. Combined with previous studies, the results from this study indicated that Chabu geyserite was a Cs-rich geyserite and was formed in an intracontinental post-collisional orogenic environment, mainly from crustal material, with the participation of biological and hydrothermal processes.

Details

Title
The Genesis of Cs-Rich Geyserite in the Chabu Geothermal Field in Southern Tibet
Author
Ruo-Ming, Li 1 ; Yu-Bin, Li 1 ; Chang-Jin, Yang 2 ; Jin-Shu, Zhang 1 ; Shen, Cong 3 ; Lin, Yuan 1 ; Yang, Can 1 ; Guo-Miao, Xu 1 ; Liu, Duo 1 ; Lin-Chao, Yang 1 ; Ze-Lin, Zhang 1 ; Zhe-Wei, Sun 1 

 School of Engineering, Tibet University, Lhasa 850000, China; [email protected] (R.-M.L.); [email protected] (J.-S.Z.); [email protected] (L.Y.); [email protected] (C.Y.); [email protected] (G.-M.X.); [email protected] (D.L.); [email protected] (L.-C.Y.); [email protected] (Z.-L.Z.); [email protected] (Z.-W.S.) 
 Regional Geological Survey Team, Tibet Bureau of Geology and Mineral Exploration and Development, Lhasa 851400, China; [email protected]; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China; [email protected] 
 Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China; [email protected] 
First page
36
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159511747
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.