Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurately and quickly estimating the peak pavement adhesion coefficient is crucial for achieving high-quality driving and for optimizing vehicle stability control strategies. However, it also helps with putting forward higher requirements for vehicle driving states, tire model construction, the speed of the convergence, and the precision of the estimation algorithm. This paper unequivocally presents two highly effective methods for accurately estimating the peak pavement adhesion coefficient. Firstly, a new dimensionless tire model is constructed. A relationship between the mechanical tire characteristics and peak adhesion coefficient is established by using the Burckhardt model’s analogy between the adhesion coefficient and peak adhesion coefficient, and the UKE algorithm completes the estimation. Secondly, an adaptive variable universe fuzzy algorithm (AVUFS) is established using the follow-up of the adhesion coefficient between the tire and the road surface. Even if the slip rate is less than 5%, the algorithm can still complete accurate estimations and does not depend on the initial given information. Finally, using the estimation advantages of the two algorithms, fusion optimization is performed, and the best estimation result is obtained. Based on the simulation results, the algorithm can quickly and precisely predict the maximum pavement adhesion coefficient in situations where the pavement has a low or high adhesion coefficient.

Details

Title
Estimation Strategy for the Adhesion Coefficient of Arbitrary Pavements Based on an Optimal Adaptive Fusion Algorithm
Author
Xu, Zhiwei 1 ; Wang, Jianxi 2   VIAFID ORCID Logo  ; Lu, Yongjie 3   VIAFID ORCID Logo  ; Li, Haoyu 3 

 School of Traffic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; [email protected] 
 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; [email protected] 
 State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; [email protected] 
First page
17
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159515315
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.