Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Amid global climate challenges and an urgent need for ecological protection, the northeastern black soil region—one of the world’s remaining “three major black soil regions”—confronts significant tensions between agricultural economic development and land ecological protection, threatening national food security. Based on the “production–ecology–life” (PLE) classification system, this study established a dual-dimensional evaluation for carbon metabolism and ESV in horizontal and vertical dimensions. The horizontal flow of carbon and ESV was traced across different ecosystems, while the spatial and temporal dynamics of carbon metabolism and ESV were analyzed vertically. Spatial autocorrelation analyses were employed to examine the interaction patterns between carbon metabolism and ESV. The findings reveal that (1) cropland production space remains the dominant spatial type, exhibiting fluctuating patterns in the size of other spatial types, with a notable reduction in water ecological space. (2) From 2000 to 2020, high-value carbon metabolism density areas were primarily concentrated in the central region, while low-value areas gradually decreased in size. Cropland production space and urban living space served as key compartments and dominant pathways for carbon flow transfer in the two periods, respectively. (3) The total ecosystem service value (ESV) showed a downward trend, decreasing by CNY 1.432 billion from 2000 to 2020. The spatial distribution pattern indicates high values in the center and northwest, contrasting with lower values in the southeast. The flow of ecological value from forest ecological space to cropland production space represents the main loss pathway. (4) A significant negative correlation exists between carbon metabolism density and ESV, with areas of high correlation predominantly centered around cropland production space. This study provides a scientific foundation for addressing the challenges facing the black soil region, achieving synergistic resource use in pursuit of carbon neutrality, and constructing a more low-carbon and sustainable spatial pattern.

Details

Title
Spatiotemporal Relationship Between Carbon Metabolism and Ecosystem Service Value in the Rural Production–Living–Ecological Space of Northeast China’s Black Soil Region: A Case Study of Bin County
Author
Shang, Yajie 1   VIAFID ORCID Logo  ; Chen, Yuanyuan 1 ; Zhai, Yalin 1 ; Wang, Lei 1   VIAFID ORCID Logo 

 College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; [email protected] (Y.S.); [email protected] (Y.C.); [email protected] (Y.Z.); Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China 
First page
199
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159533880
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.