Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a method for visualizing three-dimensional non-uniformly sampled data from multibeam echosounder systems (MBESs), aimed at addressing the requirements of monitoring complex and dynamic underwater flow fields. To tackle the challenges associated with spatially non-uniform sampling, the proposed method employs linear interpolation along the radial direction and arc length weighted interpolation in the beam direction. This approach ensures consistent resolution of three-dimensional data across the same dimension. Additionally, an opacity transfer function is generated to enhance the visualization performance of the ray casting algorithm. This function leverages data values and gradient information, including the first and second directional derivatives, to suppress the rendering of background and non-interest regions while emphasizing target areas and boundary features. The simulation and experimental results demonstrate that, compared to conventional two-dimensional beam images and three-dimensional images, the proposed algorithm provides a more intuitive and accurate representation of three-dimensional data, offering significant support for the observation and analysis of spatial flow field characteristics.

Details

Title
Three-Dimensional Non-Uniform Sampled Data Visualization from Multibeam Echosounder Systems for Underwater Imaging and Environmental Monitoring
Author
Cao, Wenjing  VIAFID ORCID Logo  ; Fang, Shiliang; Zhu, Chuanqi  VIAFID ORCID Logo  ; Miao Feng  VIAFID ORCID Logo  ; Zhou, Yifan  VIAFID ORCID Logo  ; Cao, Hongli  VIAFID ORCID Logo 
First page
294
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159534512
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.