Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The thermal and optical behavior of different elements in the urban environment is critical for urban climate regulation and planning. This study investigates the micrometeorological conditions prevailing in an urban green space (UGS) in Greece, during the heatwave of July 2023, addressing the effects of various surface materials on thermal dynamics and the urban heat island (UHI) phenomenon. The research is based on ground surface temperature and albedo measurements on different materials in the UGS, in the morning and at noon, showing great temperature differences between the different types of materials. The findings highlight the complex interaction between high-albedo surfaces and surface temperature values, suggesting that the proper selection of materials can highly affect the optical and thermal behavior of the urban environment. Artificial materials absorb more heat compared to natural vegetation, leading to high surface temperature values, reaching at noon, for example, 58.9 °C for asphalt. For the natural surfaces, dry bare soil presents similar thermal behavior (64.1 °C at noon), while green surfaces had much lower temperatures (e.g., 38.3 °C for grass). Thermal comfort indices revealed that July 2023 experienced extensive “very hot” conditions, imposing the urgent need for strategic urban planning to mitigate heat impacts. The study highlights that in order to create climate-resilient environments and improve thermal comfort, it is crucial to include suitable materials and a variety of vegetation in urban design. Such insights into the complex nature of urban microclimate indicates also the issue of the careful selection of materials and plant species in urban greening initiatives to help cities face the UHI phenomenon.

Details

Title
Reflectance and Thermal Micrometeorological Characteristics of an Urban Green Space in the Mediterranean During July’s 2023 Heatwave
Author
Proutsos, Nikolaos D 1   VIAFID ORCID Logo  ; Solomou, Alexandra D 1   VIAFID ORCID Logo  ; Stefanidis, Stefanos P 2   VIAFID ORCID Logo  ; Tsiros, Ioannis X 3 

 Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA, 11528 Athens, Greece; [email protected] 
 Forest Research Institute, Hellenic Agricultural Organization-DIMITRA, Vasilika, 57006 Thessaloniki, Greece; [email protected] 
 Meteorology Laboratory, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; [email protected] 
First page
194
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159534513
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.