Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We report a photonic-assisted method for measuring the frequencies of a multi-tone microwave with high accuracy based on pulse identification. The unknown microwave signal and a linearly chirped signal are modulated to an optical carrier using a dual-polarization Mach–Zehnder modulator. Carrier-suppressed single-sideband modulation avoids the generation of undesired frequency components after photodetection. An electrical bandpass filter with a narrow bandwidth selects the beat signal between the unknown signal and the linearly chirped optical tone. A pulse, generated by the beat signal, can be observed using an oscilloscope (OSC). By identifying the beating pulse position, we can accurately determine the frequency of the unknown signal. The single-tone and multi-tone microwave signal ranges of 6–16 GHz and 26–36 GHz are successfully measured, respectively. The measurement errors for single-tone and multi-tone signals are both less than ±1 MHz.

Details

Title
Photonic-Assisted Multi-Tone Microwave Frequency Measurement Based on Pulse Identification
Author
Xie, Xiaobing 1 ; Luo, Chao 1 ; Tang, Huiyun 1 ; Du, Jinfeng 1 ; Li, Ming 1 ; Li, Wei 1 

 Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China 
First page
1
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159539074
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.