Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fracture toughness is a critical indicator for the application of NiTi alloys in medical fields. We propose to enhance the fracture toughness of NiTi alloys by controlling the spatial grain size (GS) gradient. Utilizing rolling processes and heat treatment technology, three categories of NiTi alloys with distinct spatial GS distributions were fabricated and subsequently examined through multi-field synchronous fracture tests. It is found that the one with a locally ultra-high GS gradient (20 nm−3.4 μm) has significantly enhanced fracture toughness, which is as high as 412% of that of the normally distributed nano-grains with an average GS of 8 nm and 178% of that of the coarse-grains with an average GS of 100 nm. Theoretical analysis reveals that in such a gradient structure, phase transition in the coarse-grained matrix greatly absorbs the surface energy of subcritical and stable propagation. Meanwhile, the locally non-uniform GS distribution leads to deviation and tortuosity of the crack path, increasing the critical fracture stress. Furthermore, the nanocrystalline clusters distributed in the form of network nodes reduce the stress intensity factor due to their higher elastic modulus compared to the coarse-grained matrix. This work provides guidance for developing new gradient nanostructured NiTi alloys with high fracture toughness.

Details

Title
Enhancement of Fracture Toughness of NiTi Alloy by Controlling Grain Size Gradient
Author
Huang, Kai 1   VIAFID ORCID Logo  ; Deng, Zhongzheng 2 ; Yin, Hao 1 

 School of Civil Engineering, Wuhan University, Wuhan 430072, China; [email protected] 
 Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China 
First page
125
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159550716
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.