Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We used density functional theory with a hybrid functional to investigate the structure and properties of [4H]Si (hydrogarnet) defects in α-quartz as well as the reactions of these defects with electron holes and extra hydrogen atoms and ions. The results demonstrate the depassivation mechanisms of hydrogen-passivated silicon vacancies in α-quartz, providing a detailed understanding of their stability, electronic properties, and behaviour in different charge states. While fully hydrogen passivated silicon vacancies are electrically inert, the partial removal of hydrogen atoms activates these defects as hole traps, altering the defect states and influencing the electronic properties of the material. Our calculations of the hydrogen migration mechanisms predict the low energy barriers for H+, H0, and H, with the lowest barrier of 0.28 eV for neutral hydrogen migration between parallel c-channels and a similar barrier for H+ migration along the c-channels. The reactions of electron holes and hydrogen species with [4H]Si defects lead to the breaking of O–H bonds and the formation of non-bridging oxygen hole centres (NBOHCs) within the Si vacancies. The calculated optical absorption energies of these centres are close to those attributed to individual NBOHCs in glass samples. These findings can be useful for understanding the role of [4H]Si defects in bulk and nanocrystalline quartz as well as in SiO2-based electronic devices.

Details

Title
Reactions of Hydrogen-Passivated Silicon Vacancies in α-Quartz with Electron Holes and Hydrogen
Author
Teofilo Cobos Freire 1   VIAFID ORCID Logo  ; Strand, Jack 2   VIAFID ORCID Logo  ; Shluger, Alexander L 3   VIAFID ORCID Logo 

 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; [email protected] 
 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; [email protected]; Nanolayers Research Computing Ltd., London NW9 6PL, UK 
 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; [email protected]; WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan 
First page
142
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159550719
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.