Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, Al–Mg alloys fabricated by combining continuous rheo-extrusion (CRE) and Sc modification were proposed for producing Al–Mg alloys with high efficiency and superior mechanical performance. The microstructural evolution and mechanical property response of the CREed Al–5Mg alloy with Sc modification were investigated. The grain refinement and strengthening mechanisms induced by nanoscale Al3Sc-phase particles in the alloy were discussed. The results showed that an obvious grain refinement effect was achieved in the CREed Al–5Mg alloy as the Sc content increased from 0 to 0.5 wt%, and the average grain size decreased from 52.6 μm to 2.4 μm, respectively. The primary Al3Sc-phase particles formed during solidification behaved as heterogeneous nucleation sites for the α-Al matrix, while the nanoscale Al3Sc-phase particles achieved during CRE enhanced the driving force of continuous dynamic recrystallization and the Zener drag force. As a result, a superior grain refinement effect was observed. The ultimate tensile strength, yield strength, and hardness of the alloy were enhanced as the Sc content increased from 0 to 0.5 wt%. Grain boundary strengthening, second-phase strengthening, and dislocation strengthening were the main strengthening mechanisms of the CREed Al–Mg–Sc alloys.

Details

Title
Microstructure and Tensile Property Tailoring of Al–5Mg (wt%) Alloy Combined with Continuous Rheo-Extrusion and Sc Modification
Author
Yang, Bowei 1   VIAFID ORCID Logo  ; Liu, Wenyue 1 ; Liu, Xin 1 ; Yang, Dalong 2 ; Gao, Minqiang 2   VIAFID ORCID Logo 

 State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114021, China; [email protected] (B.Y.); [email protected] (W.L.); [email protected] (X.L.); Ansteel Beiing Research Institute Co., Ltd., Beijing 102209, China 
 Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China 
First page
54
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159551254
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.