Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Coastal aquifers are critical freshwater resources that face increasing threats from contamination and saltwater intrusion. Traditional approaches for characterizing these aquifers are challenged by complex dynamics, high-dimensional parameter spaces, and significant computational demands. This study presents an innovative method that combines an Auto-Regressive Convolutional Neural Network (AR-CNN) surrogate model with the Iterative Local Updating Ensemble Smoother (ILUES) for the joint inversion of contamination source parameters and hydraulic conductivity fields. The AR-CNN surrogate model, trained on synthetic data generated by the SEAWAT model, effectively approximates the complex input–output relationships of coastal aquifer systems, substantially reducing computational burden. The ILUES framework utilizes observational data to iteratively update model parameters. A case study involving a heterogeneous coastal aquifer with multipoint pollution sources demonstrates the efficacy of the proposed method. The results indicate that AR-CNN-ILUES successfully estimates pollution source strengths and characterizes the hydraulic conductivity field, although some limitations are observed in areas with sparse monitoring points and complex geological structures. Compared to the traditional SEAWAT-ILUES framework, the AR-CNN-ILUES approach reduces the total inversion time from approximately 70.4 h to 16.2 h, improving computational efficiency by about 77%. These findings highlight the potential of the AR-CNN-ILUES framework as a promising tool for efficient and accurate characterization of coastal aquifers. By enhancing computational efficiency without significantly compromising accuracy, this method offers a viable solution for the sustainable management and protection of coastal groundwater resources.

Details

Title
Enhancing Coastal Aquifer Characterization and Contamination Inversion with Deep Learning
Author
Chen, Xuequn 1 ; Chang, Yawen 1 ; Wu, Chao 2 ; Tian, Chanjuan 1 ; Liu, Dan 1 ; Jiang, Simin 3 

 Shandong Key Laboratory of Water Resources and Environment, Jinan 250013, China; [email protected] (X.C.); [email protected] (Y.C.); [email protected] (C.T.); [email protected] (D.L.); Water Resources Research Institute of Shandong Province, Jinan 250013, China 
 Yangtze Ecology and Environment Co., Ltd., Wuhan 430014, China; [email protected] 
 College of Civil Engineering, Tongji University, Shanghai 200092, China 
First page
255
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159615609
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.