Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, maximum reservoir contacting (MRC) wells have attracted more and more attention and have been gradually applied to CO2 WAG injections. During the use of MRC wells for CO2 WAG injections, intelligent completions are commonly considered to control CO2 breakthroughs. However, the design of the operational and intelligent completion parameters is a complicated process and there are no studies on the co-optimization of the operational and intelligent completion parameters for CO2 WAG processes. This study outlines an approach to enhance the oil recovery from CO2 WAG injection processes through the co-optimization of the operational and intelligent completion parameters of MRC wells in a carbonate reservoir. First, a simulation method is developed by using Petrel and Intersect. Then, a series of simulations are performed to prove the viability of intelligent completions and to investigate the effects of the timing and duration of the CO2 WAG injection, as well as the type, number, and placement of intelligent completion devices on the performance of a CO2 WAG injection by MRC wells. Finally, the imperialist competitive algorithm is used to co-optimize the operational and intelligent completion parameters for MRC wells. The results show that compared with the spiral inflow control device (SICD), autonomous inflow control device (AICD), labyrinth inflow control device (LICD), and annular interval control valve (AICV), the nozzle inflow control device (NICD) is the best type of intelligent completion device for MRC wells. There is an optimal installation timing, inflow area, and number of NICDs for a CO2 WAG injection by MRC wells. The NICDs need to be placed based on the permeability distribution. The oil recovery for the optimal case with the NICDs reached 46.43%, which is an increase of 3.8% over that of the base case with a conventional completion. In addition, compared with the non-uniformity coefficient of the base case (11.7), the non-uniformity coefficient of the optimal case with the NICDs decreased to 4.21. This is the first time that the co-optimization of the operational and intelligent completion parameters of a CO2 WAG injection has been reported, which adds more information about the practical applications of MRC wells in CO2 WAG injections for enhancing oil recovery in carbonate reservoirs.

Details

Title
Co-Optimization of Operational and Intelligent Completion Parameters of CO2 Water-Alternating-Gas Injection Processes in Carbonate Reservoirs
Author
Deng, Xili 1 ; Wang, Jingxuan 2 ; Zhao, Xiangguo 3 ; Rao, Liangyu 3 ; Zhao, Yongbin 4 ; Sun, Xiaofei 4   VIAFID ORCID Logo 

 Department of Middle East E&P, Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100083, China; [email protected] 
 Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China; [email protected] 
 International Hong Kong Limited—Abu Dhabi, China National Petroleum Corporation, Abu Dhabi 93785, United Arab Emirates; [email protected] (X.Z.); [email protected] (L.R.) 
 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] 
First page
375
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159623919
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.