Full Text

Turn on search term navigation

© 2025 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hypertension is a critical risk factor and cause of mortality in cardiovascular diseases, and it remains a global public health issue. Therefore, understanding its mechanisms is essential for treating and preventing hypertension. Gene expression data is an important source for obtaining hypertension biomarkers. However, this data has a small sample size and high feature dimensionality, posing challenges to biomarker identification. We propose a novel deep graph clustering feature selection (DeepGCFS) algorithm to identify hypertension gene biomarkers with more biological significance. This algorithm utilizes a graph network to represent the interaction information between genes, builds a GNN model, designs a loss function based on link prediction and self-supervised learning ideas for training, and allows each gene node to obtain a feature vector representing global information. The algorithm then uses hybrid clustering methods for gene module detection. Finally, it combines integrated feature selection methods to determine the gene biomarkers. The experiment revealed that all the ten identified hypertension biomarkers were significantly differentiated, and it was found that the classification performance of AUC can reach 97.50%, which is better than other literature methods. Six genes (PTGS2, TBXA2R, ZNF101, KCNJ2, MSRA, and CMTM5) have been reported to be associated with hypertension. By using GSE113439 as the validation dataset, the AUC value of classification performance was to be 95.45%, and seven of the genes (LYSMD3, TBXA2R, KLC3, GPR171, PTGS2, MSRA, and CMTM5) were to be significantly different. In addition, this algorithm’s performance of gene feature vector clustering was better than other comparative methods. Therefore, the proposed algorithm has significant advantages in selecting potential hypertension biomarkers.

Details

Title
Identification of hypertension gene expression biomarkers based on the DeepGCFS algorithm
Author
Li, Zongjin  VIAFID ORCID Logo  ; Tian, Liqin; Bai, Libing; Jia, Zeyu; Wu, Xiaoming; Song, Changxin
First page
e0314319
Section
Research Article
Publication year
2025
Publication date
Jan 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159629492
Copyright
© 2025 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.