It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Motivation: The complex dynamics of cancer evolution, driven by mutation and selection, underlies the molecular heterogeneity observed in tumors. The evolutionary histories of tumors of different patients can be encoded as mutation trees and reconstructed in high resolution from single-cell sequencing data, offering crucial insights for studying fitness effects of and epistasis among mutations. Existing models, however, either fail to separate mutation and selection or neglect the evolutionary histories encoded by the tumor phylogenetic trees. Results: We introduce FiTree, a tree-structured multi-type branching process model with epistatic fitness parameterization and a Bayesian inference scheme to learn fitness landscapes from single-cell tumor mutation trees. Through simulations, we demonstrate that FiTree outperforms state-of-the-art methods in inferring the fitness landscape underlying tumor evolution. Applying FiTree to a single-cell acute myeloid leukemia dataset, we identify epistatic fitness effects consistent with known biological findings and quantify uncertainty in predicting future mutational events, offering a unified framework for understanding tumor progression and potentially for guiding therapeutic strategies.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer