Full text

Turn on search term navigation

© 2025 Gau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background/Purpose

Dyslipidemia, a hallmark of metabolic syndrome (MetS), contributes to atherosclerotic and cardiometabolic disorders. Due to days-long analysis, current clinical procedures for cardiotoxic blood lipid monitoring are unmet. This study used AI-assisted attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to identify MetS and precisely quantify multiple blood lipid levels with a blood sample of 0.5 µl and the assaying time is approximately 10 minutes.

Methods

ATR-FTIR spectroscopy with 1738 data points in the spectral range of 4000–650 cm−1 was used to analyze the blood samples. An adaptive synthetic technique was used to establish a prevalence-balanced dataset. LDL-C, HDL-C, TG, VLDL-C, and cholesterol levels were defined as the predicted targets of lipid absorption profiles. Linear regression (LR), gradient boosting regression tree (GBT), and histogram-based gradient boosting regression tree (HGBTR) were used to train the models. Lipid profile value prediction was evaluated using R2 and MAE, whereas MetS prediction was evaluated using area under the ROC curve.

Results

A total of 150 blood samples from 25 individuals without MetS and 25 with MetS yielded 491 spectral measurements. In the regression models, HGBT best predicted the targets of TG, CHOL, HDL-C, LDL-C, and VLDL-C with R2 values of 0.854 (0.12), 0.684 (0.08), 0.758 (0.10), and 0.419 (0.11), respectively. The classification model with the greatest AUC was RF (0.978), followed by HGBT (0.972) and GBT (0.967).

Conclusion

The results of this study revealed that predicting MetS and determining blood lipid levels with high R2 values and limited errors are feasible for monitoring during therapy and intervention.

Details

Title
Application of attenuated total reflection–Fourier transform infrared spectroscopy in semi-quantification of blood lipids and characterization of the metabolic syndrome
Author
Gau, Tz-Ping; Jen-Hung, Wen; I-Wei, Lu; Pei-Yu, Huang; Yao-Chang, Lee  VIAFID ORCID Logo  ; Wei-Po, Lee; Hsiang-Chun, Lee  VIAFID ORCID Logo 
First page
e0316522
Section
Research Article
Publication year
2025
Publication date
Jan 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3161750762
Copyright
© 2025 Gau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.