It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In mammals, female fertility is influenced by the result of follicular development (ovulation or atresia). Follicular atresia is a complex physiological process that results in the degeneration of oocytes from the ovary. However, the molecular mechanisms of oocyte degeneration and key protein markers of follicular atresia remain unclear. In this study, we investigated the complex transcriptional regulatory mechanisms and protein profiles in oocytes and follicular fluid in atretic follicle stages using single-cell RNA sequencing and tandem mass tag proteomics.
Results
First, through paired analysis of different follicle development stages, we identified 175 atresia-specific genes and eight candidate oocyte-secreted factors, including PKG1, YTHDF2, and MYC. Meanwhile, we also characterized unique features of the oocyte transcriptional landscape in the atretic follicle stage that displayed cell death-related transcriptional changes and mechanisms, such as autophagy (TBK1 and IRS4), necroptosis (PKR), and apoptosis (MARCKS). Moreover, we identified atresia-specific genes, namely FTH1, TF, and ACSL4, which may participate in regulation of oocyte ferroptosis in atretic follicles through a series of mechanisms including ferritinophagy, ferritin transport, and lipid metabolism. Additionally, we uncovered 333 differentially expressed proteins that may coordinate follicular atresia and revealed key pathways, such as negative regulation of angiogenesis, metabolic pathways, and transcription and mRNA splicing, that lead to oocyte degeneration. Finally, by combining transcriptome and proteomics analyses, we identified two oocyte-secreted biomarkers, PGK1 and ANGPT2, that may be associated with follicular atresia.
Conclusions
In conclusion, our work offers a thorough characterization of oocyte transcription mechanism and follicular fluid protein changes in ovine atretic follicles, which offers a crucial reference for analyzing the mechanism of follicular atresia and establishing an oocyte quality assessment system in sheep.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer