Abstract
Objective
In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones are more invasive. This study aims to develop and validate an AI-driven radiomics prediction model for such nodules to enhance diagnostic accuracy.
Methods
Data of 2,591 pulmonary nodules from five medical centers (Zhengzhou People’s Hospital, etc.) were collected. Applying exclusion criteria, 370 nodules (78 benign, 292 malignant) with 3D CTR ≥ 50% were selected and randomly split 7:3 into training and validation cohorts. Using R programming, Lasso regression with 10-fold cross-validation filtered features, followed by univariate and multivariate logistic regression to construct the model. Its efficacy was evaluated by ROC, DCA curves and calibration plots.
Results
Lasso regression picked 18 non-zero coefficients from 108 features. Three significant factors—patient age, solid component volume and mean CT value—were identified. The logistic regression equation was formulated. In the training set, the ROC AUC was 0.721 (95%CI: 0.642–0.801); in the validation set, AUC was 0.757 (95%CI: 0.632–0.881), showing the model’s stability and predictive ability.
Conclusion
The model has moderate accuracy in differentiating benign from malignant 3D CTR ≥ 50% nodules, holding clinical potential. Future efforts could explore more to improve its precision and value.
Clinical trial number
Not applicable.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer